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ENHANCED LATENT HEAT METHOD TO
INCORPORATE SUPERHEAT EFFECTS INTO
FIXED-GRID MULTIPHYSICS SIMULATIONS

Seid Koric1, Brian G. Thomas2, and Vaughan R. Voller3
1National Center for Supercomputing Applications, University of Illinois at
Urbana-Champaign, Urbana, Illinois, USA
2Department of Mechanical Science and Engineering, University of Illinois at
Urbana-Champaign, Urbana, Illinois, USA
3Department of Civil Engineering, University of Minnesota, Minneapolis,
Minnesota, USA

An efficient new method has been developed to incorporate the effects of heat transfer in a

liquid pool into models of heat conduction with solidification. The procedure has been

added into the commercial package Abaqus [1] as a user-defined subroutine (UMATHT).

Computational results of fluid flow and heat transfer in a liquid domain can be characterized

by the heat flux crossing the boundary representing the solidification front, or liquidus

temperature. This ‘‘superheat flux’’ can be incorporated into an uncoupled transient simula-

tion of heat transfer phenomena in the mushy and solid regions by enhancing latent heat.

The new method has been validated and compared to semianalytical solutions and two other

numerical methods on simple test problems: two-dimensional, steady-state ledge formation

in cryolite in aluminum extraction cells, and shell thinning in continuous casting of steel. Its

real power, however, is for multiphysics simulations involving complex phenomena, such as

solidification stress analysis with nonlinear constitutive equations. Including the superheat

flux from a thermal-fluid flow simulation of the liquid pool into the latent heat provides a

very efficient and robust method for incorporating the effects of fluid flow in the liquid pool

into thermal-stress problems, especially for transient problems.

1. INTRODUCTION AND PREVIOUS WORK

As computer simulations of solidification processes mature, there is a growing
need to include the effects of fluid flow into a thermomechanical analysis. The
multiphysics approach of simulating all three phenomena (i.e., fluid flow, heat
transfer, and stress) simultaneously is very computationally demanding and requires
oversimplification of the individual phenomena [2, 3]. Some researchers attempt to
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decouple the thermal-fluid simulation from the stress analysis [4–8], but this neglects
the important effects of shrinkage=deformation on heat transfer, such as that caused
by pressure=gap formation between the casting and the mold [9–13]. Alternatively,
the fluid flow simulation can be reasonably decoupled from the thermal-stress analy-
sis if the liquid pool shape can be estimated a priori. Doing so is relatively easy for
many processes involving a stable interface shape, such as ledge formation in cryolite
electrolysis or the continuous casting of steel. Such simulations can readily output
the ‘‘superheat flux’’ that delivers heat to the solidification front, such as that
characterized by the liquidus temperature. This work investigates computational
methods for solving heat conduction problems with solidification that can include
the effect of the fluid flow by a ‘‘superheat flux.’’

Many different numerical methods have been developed to simulate heat con-
duction with phase change. Crank [14] and later Voller et al. [15, 16] have reviewed
various techniques used for these problems. Front-tracking methods attempt to
track the interface explicitly. For example, Juric and Tryggvason [17] use a fixed grid
in space in which temperatures are calculated and a moving grid on the interface in
which interface heat sources are computed. An immersed boundary method transfers
information from the interface to the fixed grid. Segal et al. [18] used an adaptive
moving grid that is introduced into the governing equations with an arbitrary
Lagrangian Eulerian (ALE) approach.

NOMENCLATURE

A surface area

[B] spatial derivative of [N]

cp specific heat

C integration constants

erf error function

H enthalpy

Hf latent heat

DHf latent heat increment

k thermal conductivity

[N] element shape functions

n surface unit normal vector

q heat flux

t time

Dt time step

T temperature

DT temperature increment

v interface velocity

V volume

x spatial coordinate

Dx mesh spacing

a thermal diffusivity

d interface position

q density

/ proportional constant

x relaxation factor

Subscripts

a ambient (temperature)

bound bound (integral)

eff efficient (convection)

h convection (surface)

i NR iteration counter

in internal (face)

init initial (temperature)

k spatial node counter

l liquid

liq liquid

melt melting (temperature)

o original

ref reference (temperature)

s solid

sh super heat (heat coefficient)

sol solid

super super (heat)

surf surface (temperature)

Superscripts

L left

R right

t previous step time

tþDt current step time

T transpose
00 flux superscript
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Fixed-grid or latent heat methods [16, 19–24] offer general, simple, and robust
alternatives to front-tracking methods. In these methods, phase change is accounted
for by tracking the solid fraction or the change in enthalpy, H, across the interface,
according to the latent heat released. These methods are easily implemented
into existing heat transfer methods or codes and have been successfully applied to
numerous phase-change problems [16, 19–24] and complex commercial solidification
processes [10–13]. To predict microscale interfacial phenomena such as dendrite
shape, ‘‘phase-field’’ methods characterize the solidification front as a field function
which varies smoothly from 0 in the solid to 1 in the liquid, based on an assumed
potential, such as Kobayashi [25] or Caginalp [26] as discussed elsewhere [27].

2. ENHANCED LATENT HEAT METHOD

2.1. Thermal Governing Equation and Its Finite Element Method
Solution

In this new computational method, temperature in a fixed-grid domain includ-
ing solid, liquid, and ‘‘mush’’ is found by solving the local form of the transient
energy equation [28],

q
qHðTÞ

qt

� �
¼ r � ½kðTÞrT � ð1Þ

along with boundary conditions of prescribed temperature, prescribed heat flux, or
the following surface convection condition:

ð�krTÞ � n ¼ hðT � TaÞ ð2Þ

Using the finite-element method for spatial discretization and a fully implicit,
two-level backward-difference algorithm for time integration [29], Eq. (1) becomes

1

Dt

Z
v

½N�TqðHtþDt �HtÞ dVþ
Z
v

½B�TkðTÞ½B� dV �
Z
Ah

½N�ThðT � TaÞ dA ¼ 0 ð3Þ

where [N] and [B] contain the element shape functions and their spatial derivatives,
respectively. Applying the Newton-Raphson iteration scheme gives the following
linearized matrix equation:

1

Dt

Z
v

½N�Tq dH

dT

� �tþDt

i

½N�dVþ
Z
v

½B�TktþDt
i ½B�dV�

Z
Ah

½N�Th1½N�dA
" #

fDTtþDt
iþ1 g

¼
Z
Ah

½N�Th1ðTtþDt
i �TaÞdA� 1

Dt

Z
v

½N�TqðHtþDt
i �HtÞdV�

Z
v

½B�Tkt½B�dV ð4Þ

Equation (4) is solved for fDTtþDt
i g and then used to update the temperature solution,

Eq. (5), until convergence is achieved at every point in the domain at time tþDt:

TtþDt
iþ1

� �
¼ TtþDt

i

� �
þ DTtþDt

iþ1

� �
ð5Þ
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2.2. Enhanced Latent Heat Method to Account for Superheat

To include the effect of superheat flux impinging on the solidification front,
the model starts with the Stefan interface condition [30] that latent heat released
due to interface displacement equals the net heat flux entering and leaving the
interface:

ks
qT
qn

� �
solid

�kl
qT
qn

� �
liquid

¼ ks
qT
qn

� �
solid

�q00super ¼ qsHf 0
qd
qt

ð6Þ

Where d(t) is the time-dependant interface position (shell thickness), n is the direction
normal to the solidification front, Hf0 is the original latent heat of fusion, and heat
flux delivered from liquid pool is called ‘‘superheat flux,’’ q00super.

Adding extra latent heat of fusion in the mushy zone to account for superheat
flux coming from the liquid pool, Eq. (6) can be rewritten as

ks
qT
qn

� �
solid

¼ qsðHf 0 þ DHf Þ
qd
qt

ð7Þ

Comparing Eqs. (6) and (7), the additional latent heat can be related to the superheat
flux:

DHf ¼
q00super
qsv

ð8Þ

where v¼ dd=dt is the instantaneous interface velocity.
Several possible methods can be used to find v in Eq. (8). In a transient numeri-

cal simulation, v can be estimated from the instantaneous temperatures, time
increment size, and spatial gradients of temperature at every material point near
the solidification front:

v ¼ DT
DtðqT=qnÞ ð9Þ

This method produces excessive and fluctuating latent heat values when temperature
increments DT are driven to be very small by the global NR iterative solution pro-
cedures in Eqs. (4) and (5), particularly at early simulation times and when superheat
fluxes are high. It was found empirically that the maximum latent heat enhancement
should be 30 to 40 times the original value in order to avoid these convergence
problems and still provide an acceptable solution.

An alternative method is to estimate v based on analytical solutions for 1-D
solidification. The simplest approach is a ‘‘quasi-stationary solution’’ [31], which
replaces heat conduction Eq. (1) by the steady-state equation while allowing
the phase-change front to advance in time. Quasi-stationary solutions have been
derived for solidification of a semi-infinite plate on a chilled surface with an imposed
temperature, heat flux, or convection boundary condition but are known to overesti-
mate the interface location [31]. Instead, a new solution is derived here based on the
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classical 1-D solid-control solidification solution [30] with the addition of superheat.
The error-function solution in the semi-infinite solid [30, 31] is given by Eq. (10):

Tðx; tÞ ¼ C1 þ C2erf
xffiffiffiffiffiffiffiffiffi
4ast

p
� �

ð10Þ

Imposing boundary conditions of T¼Tsurf at x¼ 0, T¼Tliq at x¼ d(t) gives C1 and
C2 and the temperature in the solid is

Tðx; tÞ � Tsurf

Tliq � Tsurf
¼

erf x=2
ffiffiffiffiffi
as

p ffiffi
t

p� 	
erfð/Þ ð11Þ

where / is a proportionality constant for shell thickness growth, which increases
with the square root of time:

dðtÞ ¼ 2/
ffiffiffiffiffi
as

p ffiffi
t

p
ð12Þ

The corresponding interface velocity is given by

vðtÞ ¼ ddðtÞ
dt

¼ /
ffiffiffiffiffi
as

p 1ffiffi
t

p ð13Þ

Using Eq. (11) to calculate flux coming from solid side of the interface, the Stefan
condition in Eq. (6) becomes

ksðTliq � TsurfÞffiffiffi
p

p
erfð/Þe/2 ¼ 1ffiffiffiffiffi

as
p ffiffi

t
p ¼ qsHf/

ffiffiffiffiffi
as

p ffiffi
t

p þ q00super ð14Þ

which can be rearranged as

ðTliq � TsurfÞcpsffiffiffi
p

p
Hf þ q00super=q

ffiffiffiffiffi
as

p
/ 1ffiffi

t
p


 �h i ¼ /e/
2

erfð/Þ ð15Þ

The above equation is solved for / using the bisection rule [32]. Note that

DHf ¼
q00super
qv

¼
q00super

q
ffiffiffiffiffi
as

p
/ 1ffiffi

t
p

ð16Þ

Equation (15) is identical to the known solid-control 1-D solidification solution with
no superheat [30], except that total latent heat is updated here to include the
enhanced latent heat due to superheat flux. This solution gives a very accurate
and smooth estimate of the interface for a constant or near-constant surface tem-
perature. For a surface flux or convective boundary condition, some form of time
averaging of surface temperature can be applied, which provides a better velocity
estimate than that of a quasi stationary solution.
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2.3. Numerical Implementation

Equations (4) and (5) are solved with the commercial finite-element thermal-
stress package Abaqus 6.8 [1], by creating a user subroutine UMATHT to implement
the enhanced latent heat method for superheat flux, as described in this section. This
subroutine is called at every material point during every global NR iteration, Eq. (4),
and defines at the end of each increment: (1) internal thermal energy (enthalpy), (2)
gradient of enthalpy with respect to temperature, and (3) heat flux vector.

The enthalpy gradient term (dH=dT)tþDt is greatly enlarged over the phase-
change temperature interval (mushy zone) Tsol<TtþDt in Eq. (17) owing to the evol-
ution of latent heat Hf. Here, Tsol and Tliq are the solidus and liquidus temperatures,
respectively, and cp(T) is temperature-dependent specific heat, which is equal to (dH=
dT)tþDt outside the mushy zone.

dH

dT

� �tþDt

¼ cpðTÞ þ
HtþDt

f

ðTliq � TsolÞ
ð17Þ

The enthalpy at the end of the increment is updated via Eq. (18):

HtþDt ¼ Ht þ dH

dT

� �tþDt

DT ð18Þ

In addition to latent heat, the heat flux vector at the end of the increment is updated
in UMATHT from Fourier’s law [28]:

q00 ¼ �k
qT
qx

ð19Þ

where the spatial temperature gradients qT=qx are passed in from the main Abaqus
code. To summarize the calculations performed for each material point in the mushy
zone calling UMATHT:

1. Transcendental equation (15) is solved for /.
2. Interface velocity is estimated from Eq. (13).
3. Latent heat enhancement DHf is calculated from Eq. (8) and added to original

latent heat of fusion Hf0.
4. Updated latent heat of fusion is used in Eq. (17) to calculate the enthalpy

gradient.
5. Enthalpy is updated in Eq. (18), and the heat flux vector is updated in Eq. (19).

3. MOVING-GRID APPROACH

A moving-grid approach is applied here as an alternative method to solve
two-dimensional steady solidification problems to demonstrate and validate the
new latent-heat method. It is based on the steady-state control-volume finite-element
method [33] employing bilinear quadrilateral elements. An example problem with a
rectangular domain is illustrated in Figure 1. For the moving-grid method, the

LATENT HEAT METHOD FOR SUPERHEAT EFFECTS 401

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
U
n
i
v
e
r
s
i
t
y
 
o
f
 
I
l
l
i
n
o
i
s
]
 
A
t
:
 
1
5
:
1
1
 
2
6
 
J
u
l
y
 
2
0
1
0



domain is first covered with a mesh of rectangular bilinear elements. Here, heat
transfer is governed by a steady-state heat conduction equation (20) with a constant
conductivity. The upper and lower boundaries of the domain are insulated, while the
left-hand boundary is subjected to a constant, nonzero heat transfer coefficient that
and the right-hand boundary is subjected to a nonzero heat transfer coefficient
that varies with vertical position y. Appropriate constants are set for the ambient
temperatures on the left (TL

a ) and right (TR
a ).

The steady-state control-volume finite-element solution to this problem can be
obtained for example node k in terms of nodal temperature values at the element
vertices by applying finite-element approximations as follows:

Z
in

KrT � ndA ¼
Z
bound

hðyÞðTL
a � TÞdA � hkðTL

a � TkÞ‘bound ð20Þ

where, with reference to Figure 1, the integral ‘‘in’’ is over the internal faces of the
control volume (see heavy dashed line), n represents the said faces, and the integral
‘‘bound’’ is over the control-volume faces coinciding with right-hand domain bound-
ary (see heavy continuous line). The last term on the right side of Eq. (20) is obtained
by applying a midpoint integration rule for the ‘‘bound’’ integral, where
hk ¼ hðykÞ; ‘bound is the bound segment length, and a unit dimension into the page
has been assumed.

For the solution of Eq. (20), the temperatures of nodes on the right-hand
boundary vary with height (y). In a steady-state solution of a melting=solidification
problem, however, these temperatures should take a constant value Tk¼Tmelt. To
achieve this, the position of the nodes on the boundary must be adjusted through

Figure 1. Schematic of moving-grid scheme.
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the following iterative procedure. First, for the current guess of the domain geometry
and grid, the steady-state control-volume finite-element problem is constructed and
solved. Second, based on calculated right-hand boundary nodal values, the domain
and mesh (nodal positions) are reset. A simple update scheme can force nodes to
move, while maintaining a uniform spacing, along specified paths. Note that for this
example problem, the paths are lines parallel to the x-axis.

Movement along a path is initiated by relocating the position of the node along
a boundary. In the example problem, the movement along the x-axis is calculated
from

dxk ¼ xDxk
Tmelt � Tk

Tk � Tk�1
ð21Þ

where 0<x� 1 is a relaxation factor, and Dxk is the current spacing along the
kth path. After updating the domain and mesh, steps 1 and 2 are repeated until con-
vergence, which is declared when, for all nodes k on the boundary, the temperature
difference Tmelt�Tk is less then a prescribed tolerance. Note that more rapid conver-
gence can be obtained by replacing the last term on the right side of Eq. (20) with
hk ¼ ðTL

a � TmeltÞ‘bound.

4. INTERNAL HEAT SOURCE METHOD

A simple explicit finite-difference method [34] is applied here as an alternative
method to solve one-dimensional transient solidification problems, to further
validate the new latent heat method. The superheat flux is applied as a heat source
directly to the moving solidification front by searching at each time increment
for the first interior node with a temperature below the liquidus temperature. The
temperature at that node is adjusted to

TtþDt
k ¼ TtþDt

k þ Dt
qcp Dx

q00superðtÞ ð22Þ

This method is implemented in a code, CON1D, [34] which has been coupled with a
steady-state heat conduction model of a mold wall validated and applied successfully
to simulate transient solidification in many commercial continuous casting processes.
Further detail, including its extension to two dimensions in the code CON2D, can be
found in [34, 35].

5. ONE-DIMENSIONAL TRANSIENT SOLIDIFICATION
VERIFICATION PROBLEM

The method presented in Section 3 for modeling superheat by enhancing latent
heat is tested here with a numerical analysis of a solidifying semi-infinite slab and an
analytical solution for conduction with phase change [30], and with the conventional
heat conduction method built into Abaqus [1]. The domain adopted for this problem
is a thin slice through the shell shown in Figure 2. The domain and boundary
conditions are shown in Figure 3. An instant quench of surface temperature
to 1,200�C is imposed at the left boundary, with other boundaries insulated.
A computationally challenging narrow mushy zone of 1�C between solidus and
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liquidus is used to approximate the single melting temperature assumed in the
analytical solution.

The material is a plane-carbon steel with properties listed in Table 1.
The superheat flux is best calculated with simultaneous modeling of fluid

flow. For this simplified test problem, the superheat flux is driven by the temperature
difference between Tinit and Tliq assuming stagnant liquid. It is found by first solving
the entire problem including the liquid pool starting from the initial temperature of
Tinit using the conventional solution method built into Abaqus. The heat flux shown
in Figure 4 is extracted from that simulation as a function of time at the moving
interface front (i.e., for the points that are at Tliq temperature). It represents the
superheat flux entering the narrow mushy zone from the liquid pool. To illustrate
the importance of superheat in this test problem, this case was rerun starting from
the initial temperature of Tliq.

Next, the problem was rerun using the new enhanced latent heat method in
Abaqus with UMATHT. Here, the initial temperature is Tliq, thus providing no super-
heat through the temperature difference between Tinit and Tliq. Instead, the latent
heat enhancement needed in Eq. (8) was calculated from the superheat flux in Figure 4.

Finally, an analytical solidification solution is also evaluated for comparison.
For this example problem, the transcendental equation for / takes a simplified
form [30]:

cpffiffiffi
p

p e�/2 Tref � Tsurf

erfð/Þ � Tref � Tinit

erfð/Þ � 1

� �
¼ Hf/ ð23Þ

whose solution is found using Mathematica [36] and yielding /¼ 0.43354.

Figure 2. Solidifying slice.

Figure 3. Solidifying slice domain and boundary conditions.
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Temperature in the solid (T<Tref) is given [30] by Eq. (24):

Tðx; tÞ ¼ Tsurf þ
Tref � Tsurf

erfð/Þ erf
x

2
ffiffiffiffiffi
at

p
� �

ð24Þ

Temperature in the liquid (T>Tref) is given [30] by Eq. (25):

Tðx; tÞ � Tref ¼
1

erfð/Þ � 1
Tiniterfð/Þ � Tref þ ðTref � TinitÞerf

x

2
ffiffiffiffiffi
at

p
� �� �

ð25Þ

For the case with no superheat, the transcendental equation for / [30] simplifies to
Eq. (26):

/e/
2

erfð/Þ ¼ cpðTref � TsurfÞffiffiffi
p

p
Hf

ð26Þ

Figure 4. Superheat flux profile for 1-D validation problem.

Table 1. Properties for 1-D verification problem

Symbol Property Value Units

Tliq Liquidus temperature 1,412.79 �C
Tsol Solidus temperature 1,411.79 �C
Tinit Initial temperature 1,462. �C
Tref Reference (melting) temperature 1,412.35 �C
Tsurf Surface temperature for analytical sol. 1,200 �C
k Thermal conductivity of solid=liquid 35 W=mK

cp Specific heat of solid=liquid 620. J=kgK

Hf Latent heat of fusion 247,000 J=kg

a Thermal diffusivity 7.18E-6 m2=s

q Density of solid liquid 7,860 kg=m3

L�W Slice domain dimensions 30� 0.1 mm

Element size 0.1 mm
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yielding /¼ 0.47786; and temperature in the solid is given by Eq. (27) [30]:

Tðx; tÞ � Tsurf

Tref � Tsurf
¼ erfðx=2/

ffiffiffi
a

p
Þ

erfð/Þ ð27Þ

while in liquid it is equal to Tliq.
A comparison of shell thickness (defined by Tref) between the standard method

in Abaqus, the new enhanced latent heat method, and the analytical solution is
shown in Figure 5. All three methods match closely for this test problem, both with
and without superheat. Naturally, solidification is faster with no superheat. The new
enhanced latent heat method is demonstrated to account accurately for superheat in
this transient solidification problem.

Figure 6 shows the temperature distribution through the slice domain at 10 s
for all five cases. The analytical temperature solution with superheat (solid line) is
from Eqs. (24) and (25). The analytical solution with no superheat (dotted line) is
from Eqs. (26) and (27). The circular symbols represent the standard Abaqus sol-
ution (Tinit¼ 1,462�C). The diamond symbols represent the enhanced latent heat
method for superheat with Tinit¼Tliq¼ 1,412.79�C. The square symbols represent
the Abaqus solution with no superheat (i.e., with Tinit¼Tliq¼ 1,462�C, which is
the same for both the standard and new methods.

Figure 6 shows that the three methods with superheat are almost identical in the
solid, again indicating that the enhanced latent heat method can represent superheat
effects accurately in the solid and mushy zones of interest. Within the liquid phase
above the melting temperature, the enhanced latent heat method deviates as
expected. This method starts with Tinit¼Tliq, and adds superheat to latent heat only
in the solid and mushy zones (i.e., below Tliq¼Tinit). Temperature in the liquid is not

Figure 5. Shell thickness history comparison.
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expected to be reasonable for any of these methods for realistic problems, and should
be obtained from a prior analysis that includes fluid flow.

6. TWO-DIMENSIONAL STEADY MODEL OF SOLID CRYOLITE
SHELL IN AN ALUMINUM REDUCTION CELL

The dynamic behavior of an aluminum reduction cell is a complex phenomenon
affected bymany physical processes in the pot. A schematic of one such process is shown
in Figure 7, representing a two-dimensional thermal model of heat balance in an alumi-
num reduction cell. Since the problem in Figure 7 has the same boundary conditions
as the example problem used to describe the moving-grid method in Section 3, the
enhanced latent heat method is further validated here against the moving-grid method.

Superheat flux from the liquid pool in Eq. (28) is applied across the height of
the solid shell=liquid cryolite interface (i.e., the vertical y direction), governed by a
variable heat transfer coefficient hsh in Eq. (29), which varies from 50W=m2K (edge)
to 2,000W=m2K (center), and a constant liquid bath temperature of Tinit¼ 955.5�C.
The resulting superheat flux varies between 275 and 11,000W=m2.

q00super ¼ hshðTinit � TliqÞ ð28Þ

hsh ¼ 2; 000:� 1; 950:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Absðy� 0:2Þ

0:2

r
ð29Þ

The moving-grid code assumes a unique melting temperature, 950�C, which was
modeled as an artificial mushy range of 1�C from Tsol¼ 949�C to Tliq¼ 950�C in
Abaqus, making this problem even more numerically challenging for the enhanced
latent heat method. The left edge is subject to convective cooling by ambient air with

Figure 6. Comparison of temperature profiles at 2 s showing validation of enhanced latent heat method.
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Ta¼ 30�C and heff¼ 14.36W=m2K. The other three edges are thermally insulated.
Other conditions are provided in Table 2.

Figure 8 shows the solidified ledge position calculated with the moving-grid
and enhanced latent heat methods. The moving-grid method is very efficient

Figure 7. Aluminum reduction cell domain and boundary conditions.

Table 2. Property and boundary conditions for 2-D test problem

Symbol Property Value Units

Ta Ambient temperature 30 �C
Tliq Liquidus temperature 950 �C
Tsol Solidus temperature 949 �C
Tinit Initial temperature 955.5 �C
Tsurf Average surface temperature 677. �C
Ks Thermal conductivity of solid 1.07 W=mK

Kl Thermal conductivity of liquid 10.7 W=mK

Cps Specific heat of solid 1,800. J=kgK

Cpl Specific heat of liquid 1,800. J=kgK

Hf0 Original latent heat of fusion 504,000 J=kg

qs Density of solid 2,850 kg=m3

ql Density of liquid 2,850 kg=m3

W�L Total domain dimensions 0.5� 0.4 m

Element size 10 and 2 mm

heff Conv. heat transfer Coeff. shell=ambient 14.36 W=m2K

408 S. KORIC ET AL.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
U
n
i
v
e
r
s
i
t
y
 
o
f
 
I
l
l
i
n
o
i
s
]
 
A
t
:
 
1
5
:
1
1
 
2
6
 
J
u
l
y
 
2
0
1
0



but is limited to a steady-state solution. The enhanced latent heat method
must run a transient analysis for a long period (150,000 s) to approach the
steady-state solution asymptotically, where the latent heat approaches infinity
and the interface velocity approaches zero according to Eq. (8).

Mesh refinement studies were performed with both codes, bringing the best shell
thickness results within 1mm at the center, where the greatest errors are found. The
results differed more with the coarse meshes. The edges show an almost perfect match
in all cases. Both codes reveal a variation in shell thickness of 33% from edge to cen-
ter. This is much less than the corresponding variation in superheat flux of 97.5%, and
reflects the importance of two-dimensional conduction inside the solid ledge. The
match between methods also shows that the very crude one-dimensional velocity
estimate from Eqs. (13) and (15), based on an average surface temperature of
677�C, performs surprisingly well, even for this highly two-dimensional solidification
problem. Moreover, the transient effects of ledge growth which are tracked by the
new method as part of the solution are of great practical interest in their own right.

7. ONE-DIMENSIONAL TRANSIENT SOLIDIFICATION OF STEEL SHELL IN
CONTINUOUS CASTING WITH NONLINEAR SUPERHEAT FLUX FROM
FLUID JET IMPINGEMENT

In the final test problem, both the enhanced latent heat method and the inter-
nal heat source method [34] were applied to predict steel shell growth under realistic

Figure 8. Steady-state ledge position comparison.
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continuous casting conditions. The same solidifying slice domain from Figure 1 is
used again in this analysis. All properties are listed in Table 3.

Previous work with a three-dimensional computational analysis of fluid
flow in the continuous casting mold [37–39] yielded a nonlinear superheat flux
profile along the narrow face, due to turbulent jet impingement. Figure 9 shows
a superheat flux profile based on these analyses, which peaks at 400–600mm
below the meniscus. A realistic heat flux profile extracted from the mold wall
[38] is also given in Figure 9, and is applied as a Neumann boundary condition
at the chilled surface. The domain moves with the solidifying material at the
casting speed of 25.4mm=s. This Lagrangian approach has been validated in
previous work [34].

Figure 10 shows shell thickness predictions with and without superheat along
with plant measurements [40]. Both methods match and were able to capture the
localized shell thinning effect caused by the peak in superheat flux where the jet
impinges on the shell. The plant measurements are slightly displaced, owing to the
transient nature of the breakout shell [41]. A comparison with the same case without
superheat case reveals a profound difference in shell thickness. This further empha-
sizes the importance of accounting for the superheat effect in thermomechanical
modeling of casting processes.

Table 3. Properties for steel continuous casting simulation with superheat

Symbol Property Value Units

Tliq Liquidus temperature 1,477 �C
Tsol Solidus temperature 1,502.2 �C
Tinit Initial temperature 1,502.24 �C
Tref Reference (melting) temperature 1,499.5 �C
K Thermal conductivity of solid=liquid 26 W=mK

cp Specific heat of solid=liquid 680. J=kgK

Hf Orginal latent heat of fusion 243,000 J=kg

a Thermal diffusivity 5.46E-6 m2=s

q Density of solid =liquid 7,000 kg=m3

Figure 9. Realistic superheat and mold wall fluxes.
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8. CONCLUSION

A robust new algorithm to treat the effect of liquid superheat on moving
solidification interfaces has been developed, coded into a UMATHT subroutine,
and linked with the commercial finite-element code Abaqus. This ‘‘enhanced latent
heat’’ method has been verified using both time-and spatially dependent superheat
fluxes in one- and two-dimensional solidification problems, including a comparison
with moving-grid and internal heat source methods from previous work.

The method developed in this work enables accurate uncoupling of complex
heat transfer phenomena into separate simulations of the fluid flow region and the
mushy-solid region. Spatially and temporally nonuniform superheat fluxes, pro-
duced by turbulent fluid flow and mixing in the liquid pool, are calculated from
the results of computational fluid dynamics models [37–39]. The new latent heat
method is used to link these results into coupled thermomechanical models of
continuous casting using Abaqus [12, 13].

With this new method, future thermomechanical models of steel solidification
can be more realistic, and also smaller, by avoiding the need for large liquid-filled
volumes, which are prone to convergence problems. Such progress will, ultimately,
lead to an efficient, accurate, and robust way to achieve multiphysics simulations
of metal solidification on the continuum scale.
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